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Abstract Polyhedral links have been used to model DNA polyhedra and protein
catenanes. Some topological characteristics of a type of polyhedral links fabricated
from a polyheron by the method of ‘n-branched curve and X -tangled covering’ have
been elucidated. In this paper, we pay close attention to their braid index considered
significant in view of DNA nanotechnology, and proved that the MFW inequality is
sharp for the polyhedral links. Our results demonstrate that the braid index of the links
is directed by their crossing numbers. In addition, the studies of the polyhedral links
can facilitate the research of the properties of DNA molecules, and can characterize
their structural complexity.

Keywords DNA polyheron · Polyhedral links · MFW inequality · Braid index ·
Complexity

1 Introduction

Braid index, a fundamental topological invariant, is a main issue in the field of mathe-
matics and chemistry. In chemistry, the braid index is sometimes used to describe the
complexity of a molecule [1], and it can also provide the most structural information.
The braid index of knotted hydrocarbon complexes can facilitate the study of their
properties [2].

In recent years, however, a variety of interlinked polyhedra with more exotic topol-
ogies have been synthesized. Using DNA molecules, experimental scientists have
chemically realized many DNA polyhedral nanostructure including DNA Platonic
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Fig. 1 a 5-branched curve, and
a tangle with length 4; b
X -tangle, which including
a-tangle, b-tangle, c-tangle,
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polyhedra and DNA Archimedean polyhedra [3–10]. These peculiar objects provide
some topological nontrivial structures embedded in 3D space. In the face of such topo-
logically complex molecules, the description and quantification of their construction
inspire us great chemical interest. Here, the braid index as a famous index of DNA
entanglement complexity is introduced to characterize their structural complexity.

Inspired by the novel DNA polyhedra, Zhang and Qiu et al fabricated many type
of polyhedral links, which can facilitate the description and characterization of these
DNA polyhedra. In this paper, we focus on one type of such polyhedral links intro-
duced in [11], formed from a polyhedron by the method of ‘n-branched curve and
X -tangled covering’. Now we will describe the construction of such polyhedral links.

To construct such a polyhedral link, a polyhedron P and two types of basic building
blocks are needed. One building block is an n-branched curve, the other is a X -tangle,
where X maybe a, b, c or d. The two blocks are shown in Fig. 1a and b, respectively.
In Fig. 1b, the dot lines of the two leftmost (resp. rightmost) figures denote an edge
whose sign is negative (resp. positive). The sign of edge can be shown in Fig. 1c. The
construction method as followings:

Firstly, assign a negative sign (−) or a positive sign (+) to every edges of a poly-
hedron P , then we can obtain a signed graph, denoted P− or P+. Secondly, using
several X -tangles to cover every edge of P− or P+, and replacing the vertex with
degree n of the polyhedron P by using n-branched curve. Thirdly, connecting these
two building blocks. Then we obtain four classes of polyhedral links, called La(P−),
Lb(P−), Lc(P+), Ld(P+). This can be seen in Fig. 2. For example, in La(P−), the
edges e1, e2, e3, e4, e5, e6 consist of 2,1,2,1,1,2 a-tangle, respectively. These polyhe-
dral links La(P−), Lb(P−), Lc(P+), Ld(P+) constructed are alternating and mini-
mal. For the more details, see Sect. 4.

In this paper, we will discuss the braid index of the polyhedral links.
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Fig. 2 Four classes of tetrahedral links are formed by the method of ‘n-branched curve and X -tangled
covering’

Alexander [12] showed that every link is presented as a closed braid with a finite
number of strings. The braid index of an unoriented link is a very powerful invariant,
but in general it is difficult to compute. In order to determine the braid index of a
link L , one is seeking general lower and upper estimate on the braid index of the link
L . Yamada [13] gives an upper bound for the braid index, which is the number of
Seifert circles in a given link diagram. Franks and Williams [14], and Morton [15]
independently give a lower bound for the braid index in terms of the HOMFLY poly-
nomial. To be more precise, let PL(v, z) be the HOMFLY polynomial of a link L and
max degvPL (resp. min degvPL ) the maximal degree (resp. minimal degree) in v of
PL(v, z). Then a lower bound of the braid index of a link can be shown in following.

1

2
spanvPL(v, z)+ 1 ≤ b(L), (1)

where spanvPL(v, z) =max degvPL(v, z)−min degvPL(v, z). Here max degvPL(v, z)
(resp. min degvPL(v, z)) denotes the maximal degree (resp. minimal degree) in v of
polynomial PL(v, z).

This MFW inequality of many families of links is sharp. For all but five knots
(942, 949, 10132, 10150, 10156) in the standard knot table, up to crossing number 10,
the MFW inequality is sharp. Furthermore, this inequality is sharp for torus links
and closed positive n-braids with a full twist [14]. On the other hand Murasugi [16]
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conjectured that for any alternating link, the MFW bound and the braid index coincide,
and proved that for any 2-bridge link and any alternating fibred link [16], the MFW
bound coincides with the braid index. Next, Murasugi and Przytycki [17] found a
counter example for Murasugi’s conjecture. In 2004, Nakamura [18] showed that the
MFW inequality is sharp for a certain family of closed positive braids.

On the other hand, Ohyama [19], in 1993, proves that if L is a nonsplittable link,
c(L) is its crossing number, then

b(L) ≤ 1 + c(L)

2
. (2)

In this paper, we obtain that the MFW inequality is sharp for the polyhedral links
fabricated by the method of ‘n-branched curve and X -tangled covering’. The results
demonstrate that the braid index of the polyhedral links is influenced by the number of
their crossing numbers. Our research provides a measure to characterize and analyze
the structure and complexity of DNA polyhedra. Meanwhile, it can also open a door
to the study of entanglement in biopolymers. These are considered significant in view
of DNA nanotechnology.

2 Preliminaries

2.1 Some conceptions in knot theory

A link is a closed oriented 1-manifold embedded smoothly in the 3-sphere S3, and a
knot is a link with one connected component. A knot or link diagram is a picture of a
projection of a knot onto a plane. A diagram of a link is minimal if and only if it has
no removed crossings.

The crossing number of a link L , denoted c(L), is the least number of crossings
that occur in any diagram of the link, that is, the minimal number of double points
among all diagrams of a link. It states that:

c(L) = min{c(D) : D is diagram of L}.

An n − stringbraid b is a set of n arcs embedded in D2 × I such that each 2-disc
D2 × {x}, x ∈ I , meets the n arcs in exactly n points, where n ≥ 1 and I = [0, 1].
A closed n-string braid b̂ is a set of n arcs embedded in D2 × S1 such that each disk
D2 × {x}, x ∈ S1, meets the n arcs in exactly n points. An example is illustrated in
Fig. 3.

Alexander [12] showed that every link L in S3 is represented as a closed braid with
a finite number of strings.

The braid index, denoted by b(L), is the smallest positive integer n such that L
can be represented as a closed n-string braid. Obviously, the braid index is a link type
invariant of L , but generally it is not easy to determine the braid index of a link.
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Fig. 3 A braid b and its
corresponding closed braid b̂

2.2 Some conceptions and terminologies in graph theorem

A graph G is an ordered triple (V (G), E(G), ψG) consisting of a non-empty set V (G)
of vertices, a set E(G), disjoint from V (G), of edges, and an incidence function ψG

that associates with each edge of G an unordered pair of (not necessarily distinct) ver-
tices of G. Throughout this paper, let p denote the number of vertices of a polyhedron
P , q the number of edges.

A planar graph is a graph which can be embedded in the plane or the sphere. A
planar graph already drawn in the plane without edge intersections is called a plane
graph. Steinitz, in 1992, indicates that the planar graph of all convex polyhedrons are
plane graphs [20].

A graph G is connected if it has a path with end vertices u and v, where u, v ∈ E(G).
Otherwise, G is disconnected. A component of a graph G is a subgraph that is con-
nected and is not contained in any other connected subgraph of G.

3 The Tutte and Homfly polynomials

In order to calculate the braid index of polyhedral links formed by ‘n-branched curve
and X -tangled covering’, we can work with the help of the Tutte polynomial and the
Homfly polynomial. Here, we first introduce the conceptions of Tutte and Homfly
polynomial.

The Tutte polynomial of a graph was constructed by Tutte in 1954 [21], the poly-
nomial is defined as

T (G; x, y) =
∑

F⊆E(G)

(x − 1)c(F)−1(y − 1)|F |−p+c(F),

where F is a subset of E(G), c(F) the number of connected components of G[F],
G[F] an induced subgraph of G, and |F | the cardinality of the subset F of E(G).

Another equivalent definition can be given by the following definition.

Definition 3.1 [21] The Tutte polynomial of a graph G = (V, E) is a two-variable
polynomial defined as follows:

(1) if E(G) = ∅, then T (G; x, y) = 1.
(2) if e is a bridge, then T (G; x, y) = xT (G/e, x, y).
(3) if e is a loop, then T (G; x, y) = yT (G − e, x, y).
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Fig. 4 L+, L− and L0

L L 0L

(4) if e is neither a loop nor a bridge, then T (G; x, y) = T (G − e, x, y) +
T (G/e, x, y).

In the above definition, G − e is a graph obtained from G by deleting the edge e,
and G/e is obtained from G by contracting e, that is, by deleting e and identifying its
two adjacent vertices.

Next, we introduce the definition of Homfly polynomial.

Definition 3.2 [22] The Homfly polynomial of an oriented link L , denoted by
PL(v, z), can be defined by the three following axioms.

(1) PL(v, z) is invariant under ambient isotopy of L.
(2) If L is the trivial knot then PL(v, z) = 1.
(3) Skein relation: v−1 PL+(v, z) − vPL−(v, z) = z PL0(v, z), where L+, L− and

L0 are link diagrams which are identical except near one crossing where they
are as in Fig. 4 and are called a skein triple.

A link L(G) can be obtained from graph G via the well-known medial construc-
tion in knot theory [23]. Thus, there exists a one-to-one correspondence between link
diagrams and signed plane graphs via the medial construction [23]. Thereby, for a
polyhedral link formed by ‘n-branched curve and a-tangled covering’, Jeager [24]
established a relationship of the Tutte polynomial of a plane graph G and the Hom-
fly polynomials of the link L(G). Let P̂−

a , P̂−
b , P̂+

c , P̂+
d be four plane graphs from

La(P−), Lb(P−), Lc(P+), Ld(P+)by operation shown in Fig. 1b, respectively. Then
graph P̂−

a , P̂+
c is subdivision of the polyhedron P−, P+, respectively. P̂−

b , P̂+
d is the

graph by adding some parallel edges on P−, P+, respectively.

Theorem 3.3 [24] Let P− be a connected signed plane graph with p vertices and
q edges, and let La(P−) be a link obtained by applying k (k ≥ q) operations of
‘a-tangle covering’ to P−. Then

PLa(P−)(v, z) =
(
v

z

)(p+k−q)−1 ( z

v−1

)k
T

(
P̂−

a ,
v−1

v
, 1 − −1 + v2

z2

)
. (3)

Next, in [11], Zhang et al generalized the results, and respectively gave a relation
of the Homfly polynomial of Lb(P−), Lc(P+), Ld(P+) and the Tutte polynomial of
the links corresponding plane graphs P̂−

b , P̂+
c , P̂+

d .

Theorem 3.4 [11] Let P− and P+ be two connected signed plane graphs with p
vertices and q edges. Let Lb(P−), Lc(P+), and Ld(P+) be four links, respectively
obtained by applying k (k ≥ q) operations of ‘b-tangle covering’, ‘c-tangle covering’
and ‘d-tangle covering’. Then
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PLb(P−)(v, z) =
(
− z

v−1

)(p+k−q)−1 (
− z

v

)k
T

(
P̂−

b ,
v

v−1 , 1 − −1 + v−2

z2

)

PLc(P+)(v, z) =
(

−v
−1

z

)(p+k−q)−1 (
− z

v

)k
T

(
P̂+

c ,
v

v−1 , 1 − −1 + v−2

z2

)

PLd (P+)(v, z) =
( z

v

)(p+k−q)−1 ( v

v−1

)k
T

(
P̂+

d , 1 − v2 − 1

z2 ,
v−1

v

)
.

The above Theorems 3.3 and 3.4 can open a door to explore the braid index of the
type of polyhedral links.

4 The braid index of the four classes of polyhedral links

In this section, we shall calculate the braid index of the polyhedral links. In combina-
tion with formula (1) and (2), for a nonsplittable link, we have

1

2
spanvPL(v, z)+ 1 ≤ b(L) ≤ 1 + c(L)

2
. (4)

Therefore, if the type of polyhedral links are nonsplittable links, then the formula
(4) can be written as follows.

1

2
spanvPLa(P−)(v, z)+ 1 ≤ b

(
La(P

−)
) ≤ 1 + c(La(P−))

2
1

2
spanvPLb(P−)(v, z)+ 1 ≤ b

(
Lb(P

−)
) ≤ 1 + c

(
Lb(P−)

)

2
1

2
spanvPLc(P+)(v, z)+ 1 ≤ b

(
Lc(P

+)
) ≤ 1 + c

(
Lc(P+)

)

2
1

2
spanvPLd (P+)(v, z)+ 1 ≤ b

(
Ld(P

+)
) ≤ 1 + c

(
Ld(P+)

)

2
.

Thereby, in order to use the above four formulae, we need to prove that these poly-
hedral links are nonsplittable links, and calculate their crossing numbers. Here, we
first give a lemma.

Lemma 4.1 [25] An alternating link in a minimal diagram of n crossings has crossing
number n.

From Lemma 4.1, we know that if an alternating polyhedral link discussed above
has n crossings, then the link is minimal and has crossing number n.

The definition of splittable link can also be denoted by the knowledge of graph
theorem. A link is split if it has a link diagram whose plane graph is not connected.

Theorem 4.2 Let La(P−), Lb(P−), Lc(P+), Ld(P+) be four links constructed from
a polyhedron P by the means of ‘ n-branched curve and X-tangled covering’. Then
the four links are all nonsplittable and minimal.
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Proof By Lemma 4.1, La(P−), Lb(P−), Lc(P+), Ld(P+) are minimal. The next
step is to prove they are nonsplittable links. LetC (La(P−)),C (Lb(P−)),C (Lc(P+)),
C (Ld(P+)) be four plane graphs from the polyhedron P . We know that P is con-
nected, so C (La(P−)),C (Lb(P−)),C (Lc(P+)),C (Ld(P+)) must be connected.
Therefore, according to the definition of splittable link, the four polyhedral links are
nonsplittable links.

In addition, according to the above lemma, we can obtain that the four polyhedral
links are minimal. Then, they are nonsplittable and minimal. ��

In the following theorem, we will show that the MFW inequality is sharp for the
type of polyhedral links.

Theorem 4.3 Let P− be a connected signed plane graph with p vertices and q edges.
Let La(P−) be the link obtained by applying k ‘a-tangle covering’ operations to P−.

Then the braid index of polyhedral link La(P−) is
c
(
La(P−)

)

2
+ 1 = k + 1.

Proof According to formula (3),

PLa(P−)(v, z) =
(
v

z

)(p+k−q)−1 ( z

v−1

)k
T

(
v−1

v
, 1 − −1 + v2

z

)

=
(
v

z

)(p+k−q)−1 ( z

v−1

)k ∑

F⊆E(P−)

(
v−1

v
− 1

)c(F)−1

×
(

1 − v2

z

)|F |−(p+k−q)+c(F)

= v(p+k−q)+k−1zk−(p+k−q)+1

×
∑

F⊆E(P̂−
a )

(1−v2)|F |−(p+k−q)+2c(F)−1v−2c(F)+2z−|F |+(p+k−q)−c(F).

If F = E(T ) ∪ K , K ⊆ E(P̂−
a )\E(T ) (T is a spanning tree of P̂−

a ), then
(p + k − q)− 1 < |F | ≤ k and c(F)+ |F | = 1 + |F |.

Others, c(F)+|F | = (p+k −q)+ t , where t is cyclomatic number of G|F |. Also,
let F1 ∪ F2 = F , such that 0 ≤ |F1| ≤ (p+k −q)−1 and (p+k −q)−1 < |F2| ≤ k.
Then

PLa(P−)(v, z)

= v(p+k−q)+k−1zk−(p+k−q)+1

×
∑

F⊆E(P̂−
a )

(1 − v2)|F |−(p+k−q)+2c(F)−1v−2c(F)+2z−|F |+(p+k−q)−c(F)

= v(p+k−q)+k−1zk−(p+k−q)+1

×
∑

F1⊆E(P̂−
a )

(1 − v2)|F1|−(p+k−q)+2c(F1)−1v−2c(F1)+2z−|F1|+(p+k−q)−c(F1)
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+ v(p+k−q)+k−1zk−(p+k−q)+1

×
∑

F2⊆E(P̂−
a )

(1 − v2)|F2|−(p+k−q)+2c(F2)−1v−2c(F2)+2z−|F2|+(p+k−q)−c(F2).

Let

v(p+k−q)+k−1zk−(p+k−q)+1
∑

F1⊆E(P̂−
a )

(1 − v2)|F1|−(p+k−q)+2c(F1)−1v−2c(F1)+2z−|F1|+(p+k−q)−c(F1)

= H(v, z).

and

v(p+k−q)+k−1zk−(p+k−q)+1
∑

F2⊆E(P̂−
a )

(1 − v2)|F2|−(p+k−q)+2c(F2)−1v−2c(F2)+2z−|F2|+(p+k−q)−c(F2)

= K (v, z).

Then, PLa(P−)(v, z) = H(v, z)+ K (v, z).
In the following, we first calculate the max degvPLa(P−)(v, z).
We know that the max degvPLa(P−)(v, z) is the maximum of max degvH(v, z) and

max degvK (v, z). So, here we will calculate max degvH(v, z) and max degvK (v, z),
respectively.

max degvH(v, z) = (p + k − q)+ k − 1 + 2(|F1| − (p + k − q)+ 2c(F1)− 1)

−2c(F1)+ 2 = (p + k − q)+ k − 1 + t.

and

max degvK (v, z) = (p + k − q)+ k − 1 + 2|F2| − 2(p + k − q)+ 4c(F2)

−2 − 2c(F2)+ 2 = k − (p + k − q)+ 1 + 2|F2|
= 3k − (p + k − q)+ 1.

Due to

max degvPLa(P−)(v, z) = max{max degv H(v, z), max degv K (v, z)}
= max{(p + k − q)+ k − 1 + t, 3k − (p + k − q)+ 1}
= 3k − (p + k − q)+ 1.

In the following, we will calculate the min degv PLa(P−)(v, z). In a similar way, we
have

min degv PLa(P−)(v, z) = k − (p + k − q)+ 1.
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From this,

spanvPL(v, z) = max degv PLa(P−)(v, z)− min degv PLa(P−)(v, z)

= (3k − (p + k − q)+ 1)− (k − (p + k − q)+ 1)

= 2k.

Thus,

b
(
La(P

−)
) ≥ spanvPL(v, z)

2
+ 1 = k + 1.

In addition, b
(
La(P−)

) ≤ c
(
La(P−)

)

2
+ 1 = 2k

2
+ 1 = k + 1.

Then, we obtain that the braid index of the polyhedral link La(P−) is

b
(
La(P

−)
) = c

(
La(P−)

)

2
+ 1 = k + 1.

��
In a similar way, we have the following theorem 4.4.

Theorem 4.4 Let P− be a connected signed plane graph. Let Lb(P−) be the link
obtained by applying k ‘b-tangle covering’ operations to P−. Then the braid index of

polyhedral link Lb(P−) is
c
(
Lb(P+)

)

2
+ 1 = k + 1.

Since Lc(P+) (reps. Ld(P+)) is a mirror of La(P−) (reps. Lb(P−)), we can give
the following theorem 4.5.

Theorem 4.5 Let P+ be a connected signed plane graph. Let Lc(P+) (reps. Ld(P+))
be the link obtained by applying k ‘c-tangle covering’ (reps. ‘d-tangle covering’) oper-
ations to P+. Then the braid index of the polyhedral link Lc(P+) (reps. Ld(P+)) is
c
(
Lc(P+)

)

2
+ 1 = k + 1.

(
reps.

c
(
Ld(P+)

)

2
+ 1 = k + 1.

)

The above Theorems 4.3, 4.4 and 4.5 demonstrate that the MFW inequality is sharp
for the type of ‘X -tangle covering’ polyhedral links.

5 Conclusions

In this paper, inspired by the braid index of some types of links, we focus on the type
of polyhedral links formed from a polyhedron by the method of ‘n-branched curve
and X -tangled covering’, and obtain that the MFW inequality is also sharp for the
links. The result demonstrates that the braid index of the polyhedral links is directed
by their crossing numbers.
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Fig. 5 The link a is obtained by
applying 9 operations of
‘a-tangle covering’. The link b is
fabricated by applying 8
operations of ‘a-tangle covering’

(a) (b)

Research on the braid index has provided a new way to detect the complexity of these
links. As a result, the type of polyhedral links with greater braid index is more com-
plex. Thereby, the complexity of the four links La(P−), Lb(P−), Lc(P+), Ld(P+)
increases with the increase of their crossing numbers. For example, in Fig. 5, the braid
index of (a) is 10, the braid index of (b) is 9. So the complexity of the link (a) is more
than the link (b).

From mathematics, the research indicates that MFW inequality is sharp for the
polyhedral links we introduce above. And from chemistry, the studies of the type of
polyhedral links can facilitate the research of the properties of DNA nanotechnology,
and can characterize their structural complexity.
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